An Algebraic Criterion for Strong Stability of Stationary Solutions of Nonlinear Programs with a Finite Number of Equality Constraints and an Abstract Convex Constraint

نویسنده

  • Toshihiro Matsumoto
چکیده

This paper addresses strong stability, in the sense of Kojima, of stationary solutions of nonlinear programs Pro with a finite number of equality constraints and one abstract convex constraint defined by the closed convex set K. It intends to extend results of our former paper that treated nonlinear programs Pro in a special case that K is the set of nonnegative symmetric matrices S+. Firstly, it deduces properties of eigenvalues of the Euclidean projector on K. Secondly, it extends the results to programs Pro in case that the convex set K satisfies the regular boundary condition that S+ always satisfies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Strong Stability of Stationary Solutions of Nonlinear Programs with a Finite Number of Equality Constraints and an Abstract Convex Constraint

In this report we treat nonlinear programs Pro(f, h;K) having an objective function f , a finite number of equality constraints h(x) = (h1(x), · · · , hl(x)) = 0, and an abstract convex constraint x ∈ K with its convex set K. Our particular interest is an algebraic criterion for a locally isolated stationary solution to be strong stable, in the sense of Kojima, under a Linear Independence Const...

متن کامل

Optimal Design of Geometrically Nonlinear Structures Under a Stability Constraint

This paper suggests an optimization-based methodology for the design of minimum weight structures with kinematic nonlinear behavior. Attention is focused on three-dimensional reticulated structures idealized with beam elements under proportional static loadings. The algorithm used for optimization is based on a classical optimality criterion approach using an active-set strategy for extreme lim...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

VOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES

In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005